Effect-based *in vitro* methods to monitor hazardous chemicals in the environment.

Johan Lundqvist, Ph.D. Associate Professor of Molecular Toxicology Swedish University of Agricultural Sciences

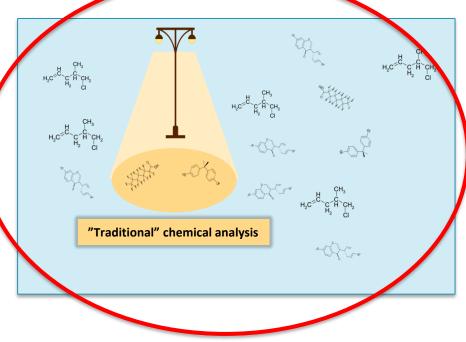
an energy of the ball of the property of

SCIENCE AND FOR EDUCATION FOR USTAINABLE LIFE

Disclosure statement

• Co-founder of a startup company providing effect-based testing services to the water sector

Risk = hazard x exposure


- a problem for both the environment and human health
- Tens of thousands of chemicals are spread into the environment
- Societal challenge of great concern, addressed in three UN Global Goals

What are we looking for?

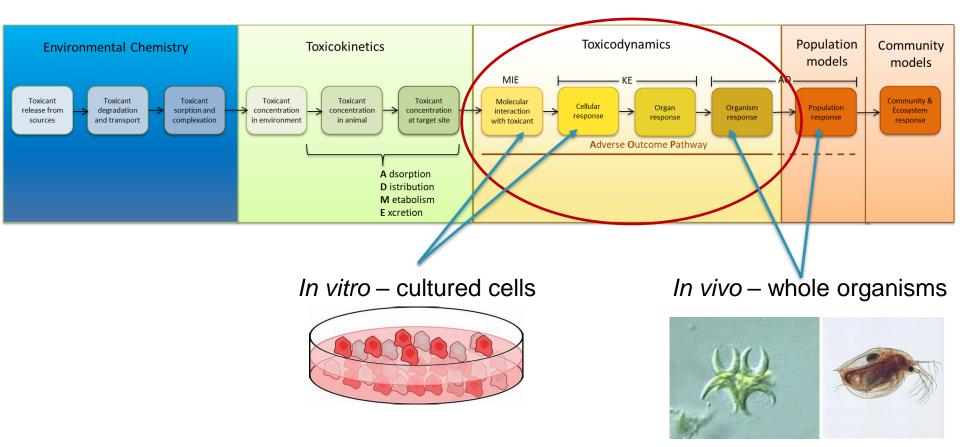
- Chemicals in the environment why worry? Potential biological effects!
- Limitations of environmental monitoring based on target screening
- Tens of thousands of chemicals are spread into the environment with very limited information on potential toxicity
- Need for a shift from analysis of a limited number of known pollutants to measurement of the total biological effects of pollutants

Looking under the streetlight – is it really a problem?

- Yes, it is!
- Numerous publications show that known/analyzed chemicals can only explain a small fraction of the observed biological effects in environmental water samples

Example:

- Water samples from streams impacted by wastewater effluents
- Chemically characterized for 400 pollutants
- Effect-based assessment of bioactivities
- The 400 pollutants could only explain 0.2-1.6% of the observed effects on ER, AR and oxidative stress response
- 99% of the observed biological effects was cused by unknown chemicals



compounds

Effect-based methods

- Integrating the effect of both known and unknown compounds and cocktail effects

Effect based methods - in vitro and in vivo

Effect-based in vitro methods

- Toxicity testing in the 21st century
- Cultured cells of, modified to respond to molecular events early in toxicity pathways
- Reporter gene assay (*e.g.* luciferase as reporter)
- Cost effective, high-throughput
 - 96 or 384 well plates

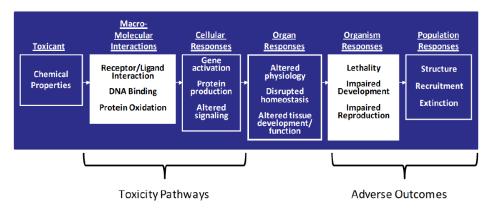
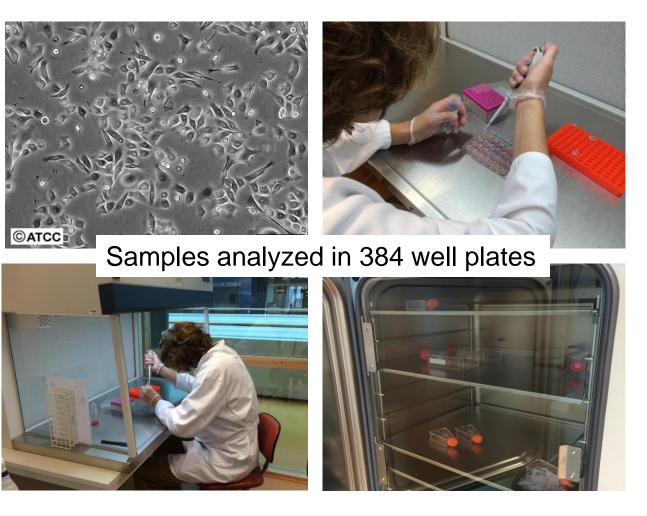
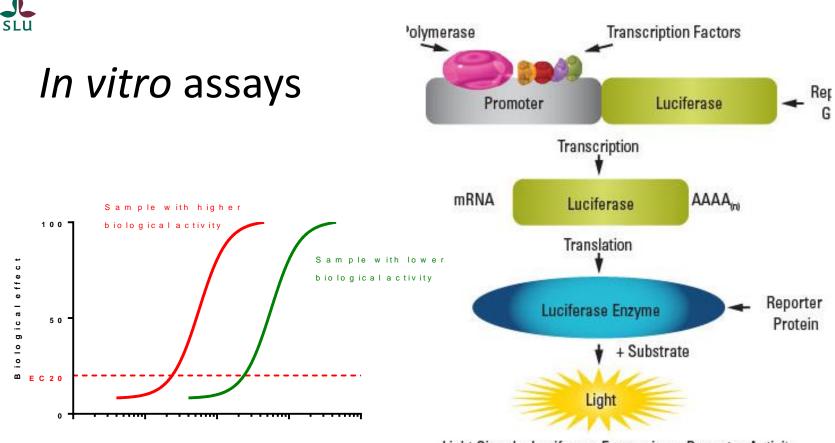
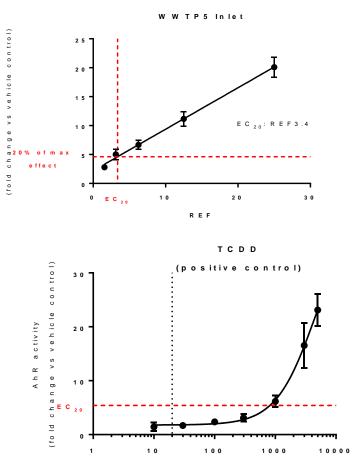




Figure: US Environmental Protection Agency

Concentration factor water sam ple

Light Signal = Luciferase Expression = Promoter Activity


Possible metrics/outputs

Preferred

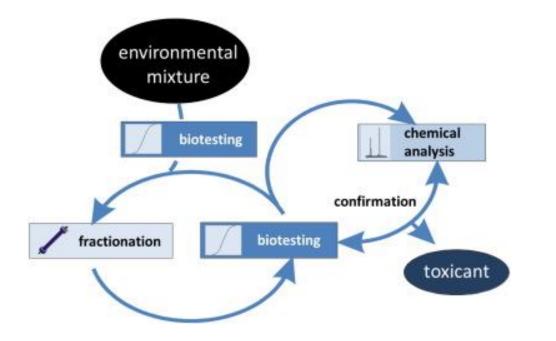
- EC₂₀/EC₅₀ expressed as REF
- Bioanalytical equivalent concentrations (BEQ) ("the observed activity corresponds to x ng/L of the known inducer y")

Non-preferred

 LOEC/NOEC (depends on the REF values analyzed)

Concentration TCDD (pM)

In vitro endpoints investigated


- Oxidative stress (Nrf2 activity)
 - Broad range of pollutants
- Aryl hydrocarbon receptor (AhR) activation
 - Broad range of pollutants, eg PAHs, dioxins etcetera
- Estrogen receptor (ER) activation
 - Sex hormones and a few pollutants
- Androgen receptor (AR) activation and deactivation
 - Sex hormones and a few pollutants
- Genotoxicity

Quality controls:

- Cytotoxic concentrations excluded
- Positive control standard curve

- EDA
- vEDA

Brack et al, Science of The Total Environment Volume 544, 15 February 2016, Pages 1073-1118

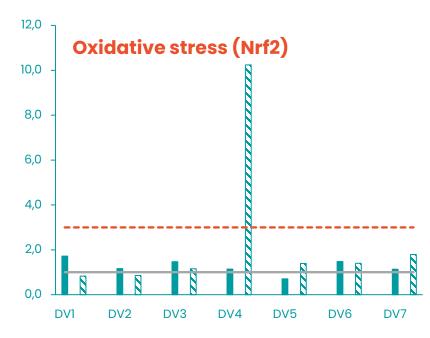
The his is high

SCIENCE AND FOR EDUCATION FOR SUSTAINABLE LIFE

Current and previous studies

- Removal-efficiency of chemical pollutants during waste water treatment
- Unidentified hazardous chemical in drinking water

SCIENTIFIC REPORTS


l: 16 January 2019 l: 29 April 2019 d online: 09 May 2019

Johan Lundqvist 1, Geeta Mandava¹, Sebastian Lungu-Mitea¹, Foon Yin Lai² & Lutz Ahrens²

Assay	WWTP1 Inlet	WWTP1 Outlet	WWTP2 Inlet	WWTP2 Outlet	WWTP3 Inlet	WWTP3 Outlet	WWTP4 Inlet	WWTP4 Outlet	WWTP5 Inlet	WWTP5 Outlet
AR agonism DHTEQ (nM)	60	0.2	0.6	0.3	0.7	0.3	40	0.25	38	n.d.
ER agonism E2EQ (pM)	930	30	130	30	100	10	930	4.0	130	4.0
Nrf2 activity tBHQEQ (µM)	2.5	1.1	n.d.	0.8	n.d.	n.d.	3.5	1.0	1.2	0.9
AhR activity TCDDEQ (pM)	580	490	730	350	610	300	1200	480	750	300
NFκB activity TNFαEQ (ng mL ⁻¹)	n.d.	n.d.	0.05	n.d.	n.d.	n.d.	0.2	n.d.	n.d.	n.d.

Unknown pollutant in drinking water

- All chemical parameters were acceptable
- Unknown compound(s) with hazardous properties is contaminating the drinking water

Data from Oskarsson et al, 2021

Summary effect-based in vitro methods

- Integrates the effects of both known and unknown chemicals as well as mixture/cocktail effects
- High specificity and sensitivity especially for the assays based on nuclear receptor activation (e.g. estrogenic activity)
- Possibility to combine with advanced chemical analysis to potentially identify currently unknown toxic environmental pollutants